Updates from NGS: Improvements to OPUS Projects and Updates on the National Spatial Reference System Jacob Heck NGS Great Lakes Regional Geodetic Advisor ISPLS 2023 Convention

My Background

- Great Lakes Regional Geodetic Advisor (IN, IL, WI, MI)
- Previously at NGS Headquarters Geosciences Research Division
- B.S. Surveying Engineering at Michigan Tech
- Ph.D. in Geodetic Science at The Ohio State University
- Professional Surveyor (MI)

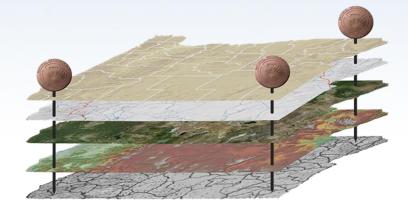
Regional Geodetic Advisor Program

Deprecation of the US Survey Foot

- U.S. survey foot was deprecated on December 31, 2022
- But use can continue for SPCS 83 (and SPCS 27)
 The 40 states that "officially" use U.S. foot for SPCS 83
 All SPCS 27 zones
 - NGS will support such "legacy" use forever
 - But *NOT* supported for *ANY* zones in SPCS2022
 NGS will always support
 U.S. survey foot for SPCS 83 and 27

geodesy.noaa.gov

NSRS MODERNIZATION STATUS AND UPDATES


The National Spatial Reference System (NSRS)

NGS defines, maintains and provides access to the NSRS to meet our Nation's economic, social & environmental needs

Latitude • Longitude • <u>Elevation</u>

• Gravity • Shoreline Position

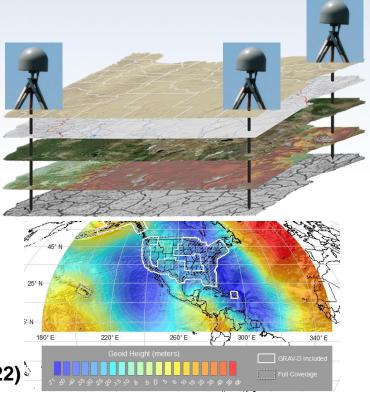
+ changes over time

- North American Datum of 1983 (NAD 83)
- North American Vertical Datum of 1988 (NAVD 88)

Today's NSRS

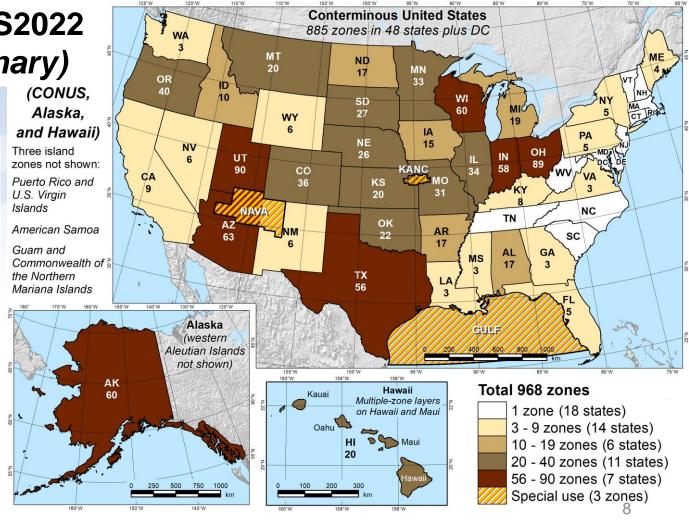
The National Spatial Reference System (NSRS)

NGS defines, maintains and provides access to the NSRS to meet our Nation's economic, social & environmental needs


Latitude • Longitude • Elevation

• Gravity • Shoreline Position

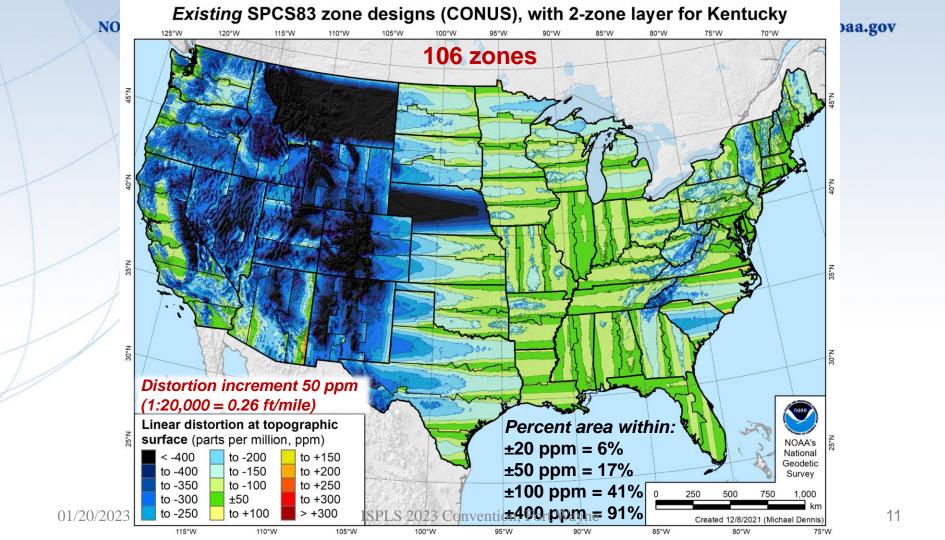
+ changes over time

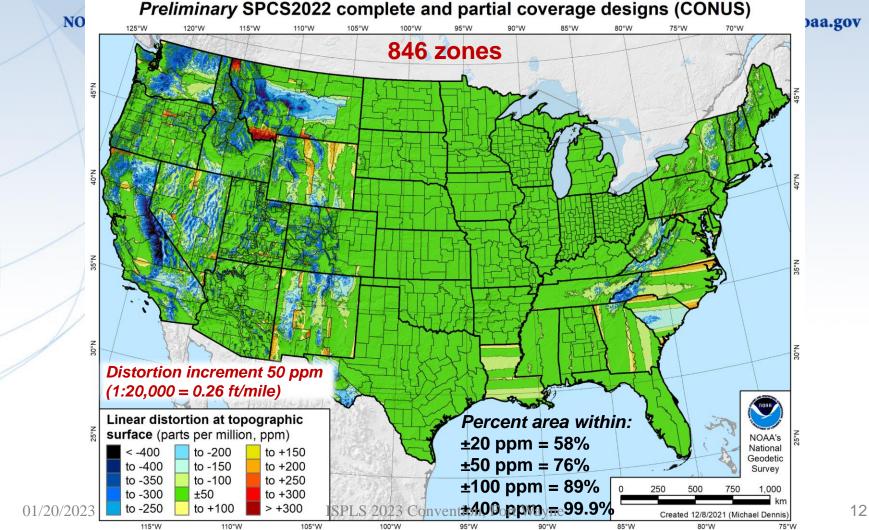

North American Terrestrial Reference Frame (NATRF2022) Caribbean Terrestrial Reference Frame (CATRF2022) Pacific Terrestrial Reference Frame (PATRF2022) Marianas Terrestrial Reference Frame (MATRF2022)

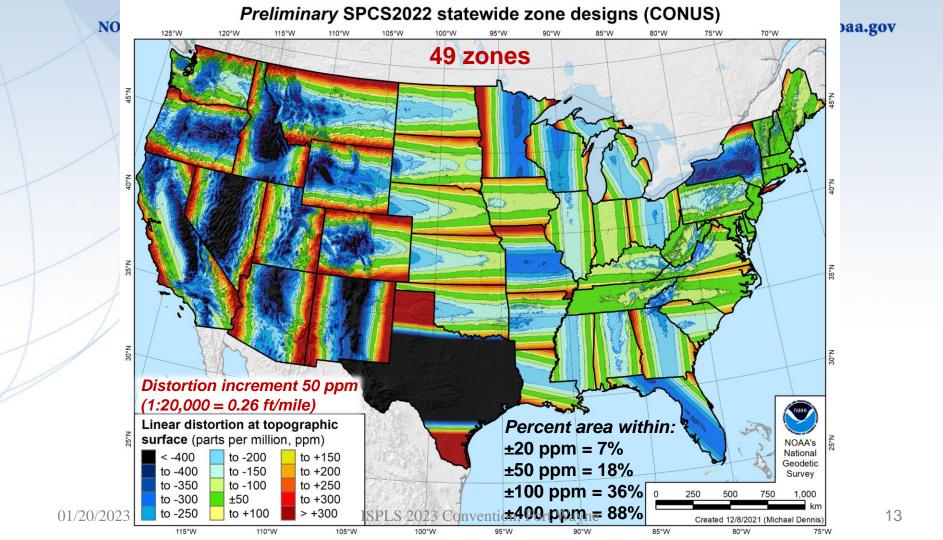
North America and Pacific Geopotential Datum (NAPGD2022)

Number of SPCS2022 zones (preliminary)

- 968 total zones nationwide
- Indiana has 2 zone layers:
 - A statewide zone
 - 57 LDP zones

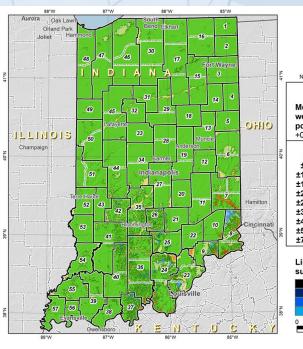

Getting acquainted with SPCS2022


- Distortion design philosophy
 - Linear distortion minimized at topographic surface (not at ellipsoid surface)
 - *Purpose:* to reduce difference between projected "grid" and actual "ground" distances
- Other things:
 - Zone "layers"
 - Low distortion projections (LDPs)
 - Indiana designs approved by NGS in October 2022
 - Will be implemented with the Modernized (2022) NSRS

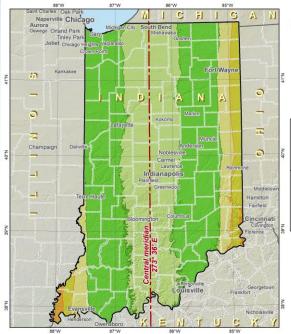

Linear distortion magnitudes

Parts per million	Centimeters per kilometer	Feet per mile	Dimensionle ss ratio
20 ppm	2 cm/km	0.1 ft/mile	1:50,000
50 ppm	5 cm/km	0.3 ft/mile	1:20,000
100 ppm	10 cm/km	0.5 ft/mile	1:10,000
400 ppm	40 cm/km	2.1 ft/mile	1:2,500

ISPLS 2023 Convention, Fort Wayne



geodesy.noaa.gov


Indiana SPCS2022 Layers

Preliminary SPCS2022 design Indiana complete coverage layer (57 zones) Noth American Terrestrial Reference Frame of 2022					
Distortion statistics (ppm)					
		Cities			
lean	Mi				
reighted			in the second second		
opulatio					
0.4	Mea	n +0.5	5 +0.02		
Percent within distortion ranges					
Range	Pop	Cities	Area		
±5 ppm	92%	88%	90%		
10 ppm	99.5%	97%	99.1%		
15 ppm	99.99%	99.6%	99.9%		
20 ppm	100%	100%	99.999%		
25 ppm	100%	100%	100%		
30 ppm	100%	100%	100%		
40 ppm	100%	100%	100%		
50 ppm	100%	100%	100%		
	100%	100%	100%		

Linear distortion at topographic surface (parts per million)

	< -30	to	-15		to +15
	to -30	to	-10		to +20
	to -25	±5			to +25
	to -20	to	+10		> +25
0	50		100		150
					km
			Creater	d 10	0/28/2022 (Michael Dennis)

Preliminary SPCS2022 statewide zone design: Indiana (NGS design)

Transverse Mercator projection North American Terrestrial Reference Frame of 2022 Central meridian: 273° 36' E Cen merid scale: 0.999 96 (exact)

75 ppm distortion	Areas within
40 ft per mile):	(1:13,333 =
on	94% of popu
and towns	88% of all ci
one area	87% of entire
one area	87% of entire

Distortion values (ppm)			
Cities and towns:			
Min, Max = -80, +172			
+222 Range = 252 = 303 Mean = -20			
		(weighted by population)	

< -400	to -200	to +150
to -400	to -150	to +200
to -350	to -100	to +250
to -300	±50	to +300
to -250	to +100	> +300

Created 06/01/2019 (Michael Dennis)

What to expect for SPCS2022

Coordinates will change by at least 10,000 m

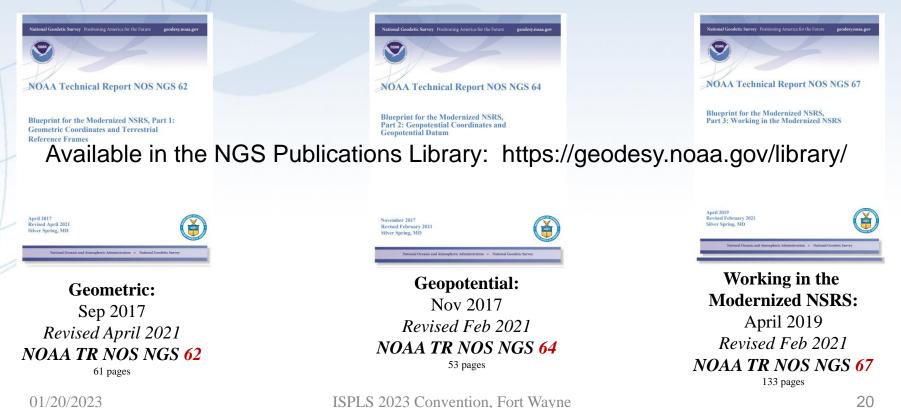
- Latitude and longitude change about 1-2 m
- Rest of change due to projection definition
- Less difference between "grid" and "ground"
- More than one zone layer in most states
 - Zones will be similar to SPCS 83 in some states
 - Zones will be very different in most states
- Every state will have a statewide zone layer

SPCS2022 summary

- Minimize distortion at topo surface, not ellipsoid
- Up to 3 zone "layers" allowed
 - Some layers very similar to existing SPCS 83
 - Some layers very different
- Total of 968 zones (likely will decrease somewhat):
 - 54 statewide zones
 - 911 zones that cover part of a state
 - 3 special use zones
- Will be implemented along with Modernized NSRS
 - Earlier usage with NAD 83 will not be supported by NGS
 - Can change/add/remove zones after modernized NSRS

Deprecation of the US Survey Foot

- U.S. survey foot was deprecated on December 31, 2022
- But use can continue for SPCS 83 (and SPCS 27)
 The 40 states that "officially" use U.S. foot for SPCS 83
 All SPCS 27 zones
 - NGS will support such "legacy" use forever
 - But *NOT* supported for *ANY* zones in SPCS2022
 NGS will always support
 U.S. survey foot for SPCS 83 and 27



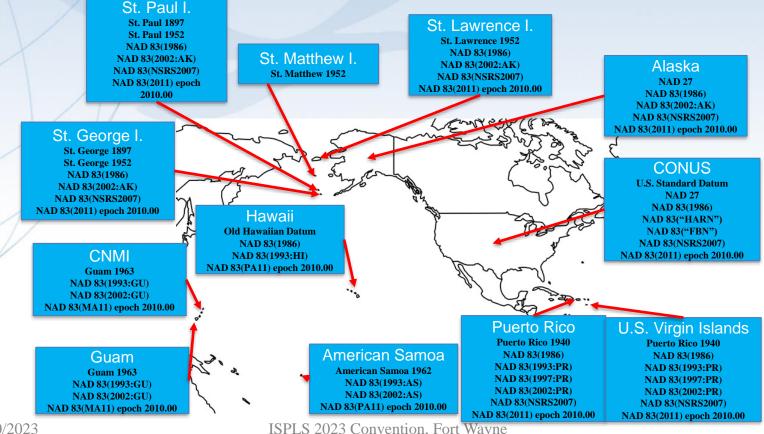
NSRS Modernization: Delay

- Will names change?
 - No, "GEOID2022", "NATRF2022", etc. will remain the same
- NGS anticipates the release of all data, and limited tools, by the middle of 2025.
 - Some of this may depend on things outside of NGS control (we have already delayed beyond 2022!)
- Work on additional tools will continue in the outyears

geodesy.noaa.gov

Updated blueprint documents

A two-track approach to coordinates

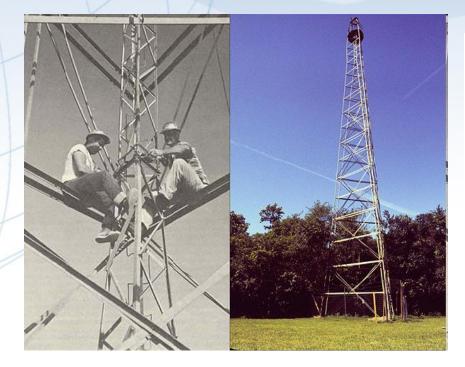

Reference Epoch Coordinates

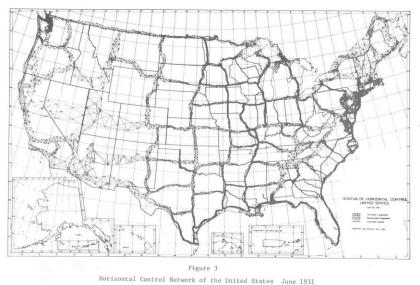
- An estimated "snapshot" of entire network
- Every 5 or 10 years
- Similar to NAD 83(2011) epoch 2010.00

Survey Epoch Coordinates

- Time-dependent!
- Reflects coordinates at time of observation
- Multiple SECs can show changes over time

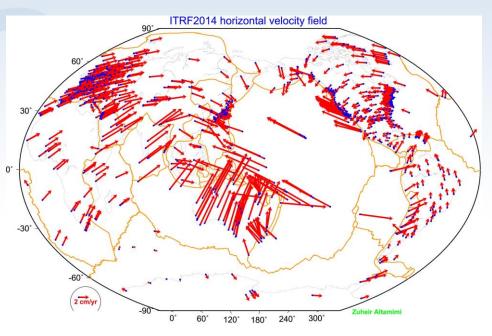
Horizontal Datums of the NSRS


01/20/2023


Replacing the NAD 83s

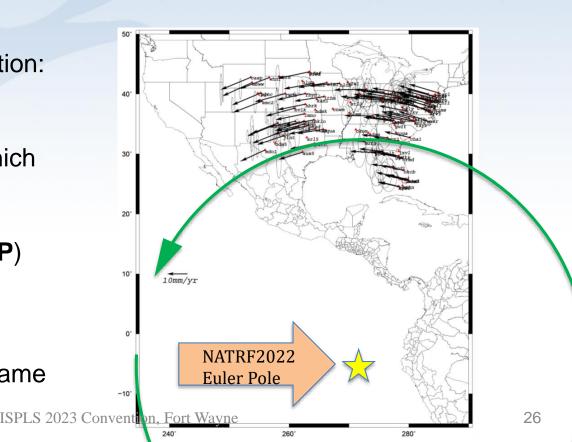
	The Old	The New		
J	NAD 83 (2011)	NATRF2022 - The North American Terrestrial Reference Frame of 2022		
	NAD 83 (2011)	CATRF2022 - The Caribbean Terrestrial Reference Frame of 2022		
	NAD 83 (PA11)	PATRF2022 - The Pacific Terrestrial Reference Frame of 2022		
	NAD 83 (MA11)	MATRF2022 - The Mariana Terrestrial Reference Frame of 2022		

geodesy.noaa.gov


Developing previous horizontal datums

The IGS Reference Frame

- The ITRF is defined by reference epoch coordinates AND velocities at stations
- The ITRF velocity field very closely resembles absolute plate motion
- The ITRF and IGS frames are both no-net-rotation frames – the sum of the angular velocities is constrained to be zero
- The Modernized (2022) NSRS Reference Frames will tie to ITRF2020

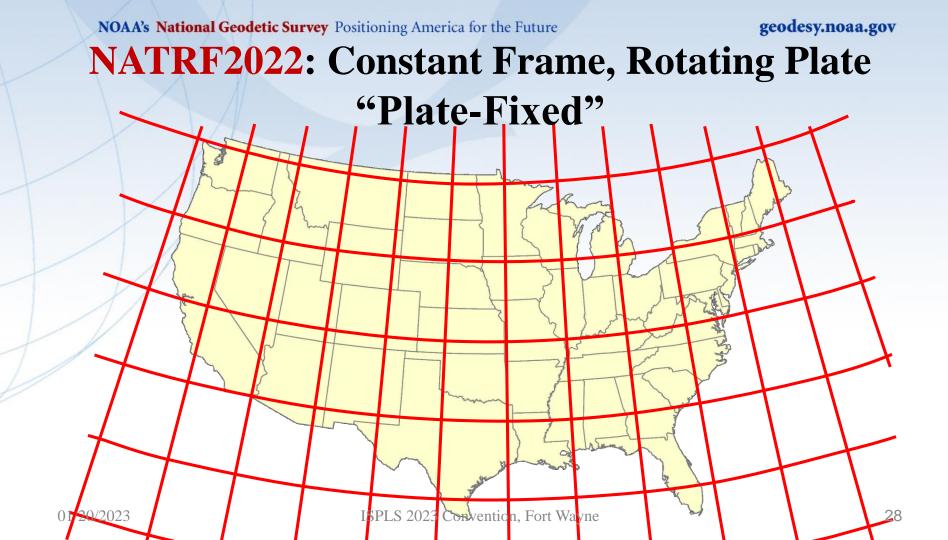


Altamimi et al., 2016, JGR

geodesy.noaa.gov

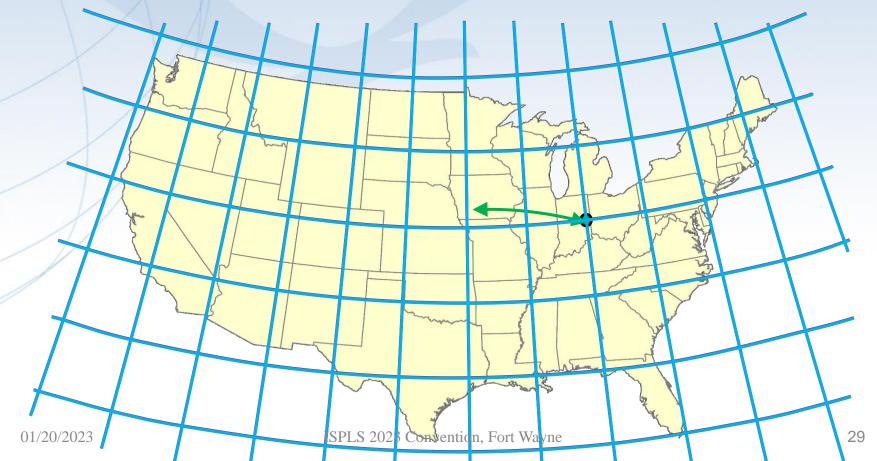
Euler Poles and "Plate-Fixed"

- In the ITRF, many tectonic plates have a *dominant* motion: rotation
 - Euler Pole point about which a plate rotates (yellow star)
- -Euler Pole Parameters (EPP) define this rotation
- Residual motion is characterized in an Intra-Frame Deformation Model (IFDM) 01/20/2023

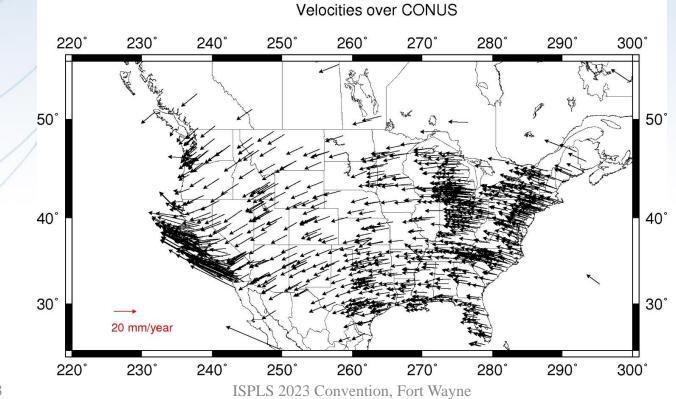

NOAA's National Geodetic Survey Positioning America for the Future ITRF2020: Constant Frame,

Rotating Plate

01/20/2023

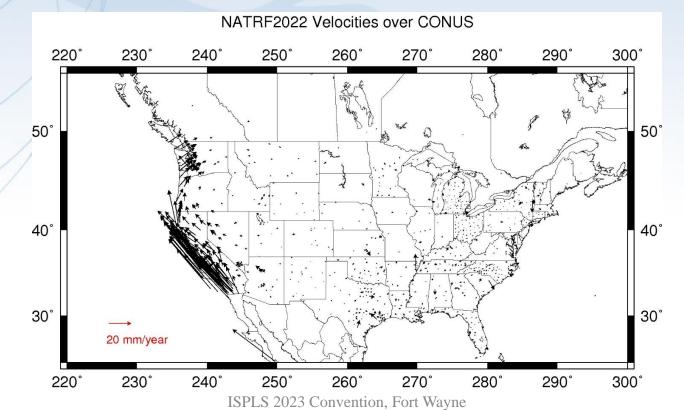

ISPLS 2023 Convention, Fort Wayne

geodesy.noaa.gov

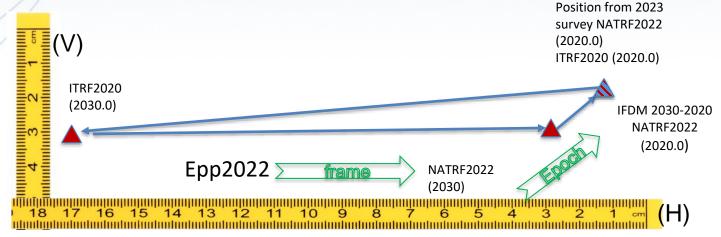


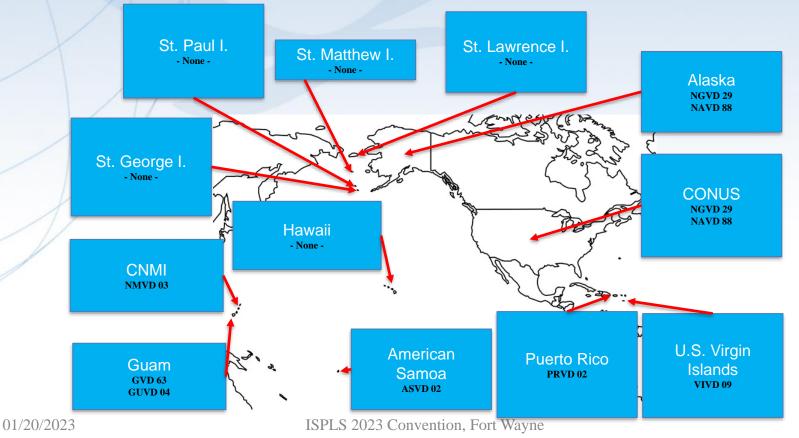
geodesy.noaa.gov

ITRF2020 or NATRF2022


NOAA's National Geodetic Survey Positioning America for the Future Residual Velocities – ITRF2020/CONUS

NOAA's National Geodetic Survey Positioning America for the Future Residual Velocities – NATRF2022/CONUS

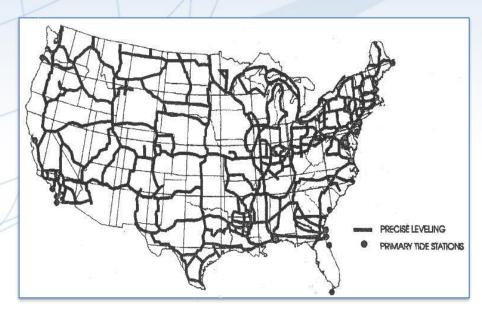

geodesy.noaa.gov

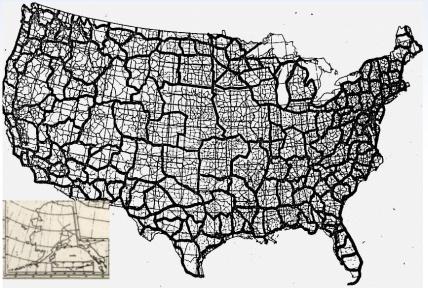

01/20/2023

NOAA's National Geodetic Survey Positioning America for the Future Geodesy.noaa.gov Coordinates, Frames, Epochs, EPP2022 and IFDM2022

- A survey done Jan 1, 2023 and reported at epoch 2020.0
- 2. New Survey (same point) done Jan 1, 2030
- 3. Position of point in NATRF2022(2030)
- 4. Position of point in NATRF2022(2020)
- 5. If IFDM = 0, then NATRF2022 (2030) = NATRF2022 (2020)

Vertical Datums of the NSRS


33


geodesy.noaa.gov

Developing the previous vertical datums

NGVD 29

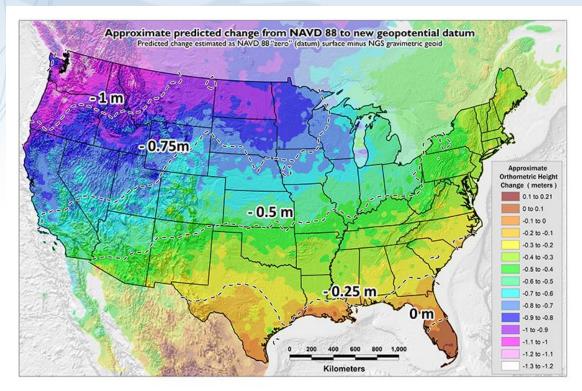
NAVD 88

Leveling

geodesy.noaa.gov

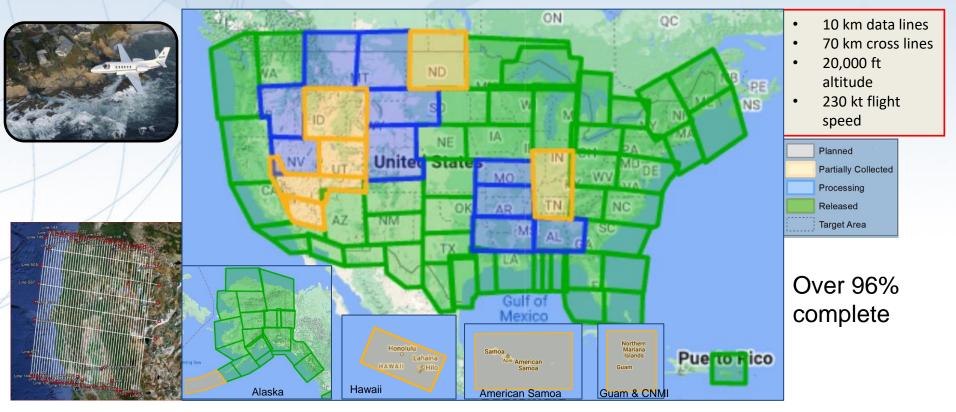
ISPLS 2023 Convention, Fort Wayne

Replacing NAVD 88

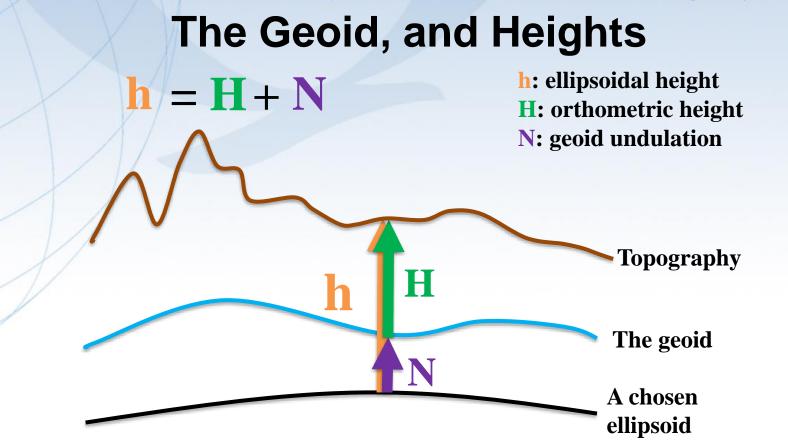

The Old: The New: Orthometric **NAVD 88 Heights** PRVD 02 VIVD09 Normal Will include: ASVD02 Orthometric -Heights NMVD03 GUVD04 **GRAV2022 Dvnamic** IGLD 85 DEM2022 Heights More IGSN71 Gravity Geoid GEOID18 Undulations **Deflections of** DEFLEC18 the Vertical

The North American-Pacific Geopotential Datum of 2022 (NAPGD2022)

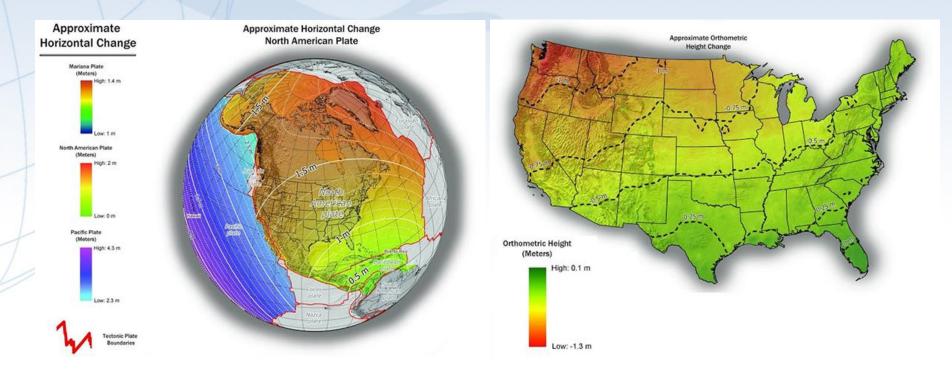
- GEOID2022
- DEFLEC2022
 - A HUGE component of this
- effort is GRAV-D:


Gravity for the Redefinition of the American Vertical Datum

NOAA's National Geodetic Survey Positioning America for the Future geodesy.noaa.gov NAVD 88 (epoch ?) to NAPGD2022 Epoch 2020.00 (estimate)


ISPLS 2023 Convention, Fort Wayne

NOAA's National Geodetic Survey Positioning America for the Futuregeodesy.noaa.govGravity for the Redefinition of the American Vertical Datum (GRAV-D)


ISPLS 2023 Convention, Fort Wayne

geodesy.noaa.gov

geodesy.noaa.gov

Modernized NSRS: Shift and Drift

geodesy.noaa.gov

NEW TYPES OF COORDINATES

ISPLS 2023 Convention, Fort Wayne

ca for the Future

geodesy.noaa.gov

NOAA Technical Report NOS NGS 67

Blueprint for the Modernized NSRS, Part 3: Working in the Modernized NSRS

April 2019 Revised February 2021 Silver Spring, MD

geodesy.noaa.gov

Coordinate: One of a set of N numbers designating the location of a point in N-dimensional space. Specific to the modernized NSRS, five types of coordinates will be supported.

geodesy.noaa.gov

New Types of Coordinates

NGS anticipates that 5 types of coordinates will be used in the NSRS. They are:

Reported OPUS Reference Epoch Survey Epoch Active

geodesy.noaa.gov

"Part of the NSRS"

 Only coordinates computed by NGS and stored in the NSRS database are "part of the NSRS"

Reference Epoch
Survey Epoch
Active

OPUS Coordinates can be "tied to the NSRS"

Passive Control

Any geodetic control point that is not active control. **Common examples** include a metal disk set in concrete or stone, or a stainless steel rod driven into the ground.

geodesy.noaa.gov

Active Control

- A geodetic control point at a station occupied by equipment intended for and capable of continuously collecting geodetic quality data for multiple years and with active defined by or adopted by NGS.
- CORS

geodesy.noaa.gov

Shift and Drift

When transitioning off of NAD 83, your coordinates will experience shift and drift

- Shift: A one-time jump somewhere in the 0 to 4 meter range (latitude, longitude, ellipsoid height)
- Drift: Coordinates are now time-dependent. The shift will take you to 2020.00. Working at any other epoch means you must account for the drift (velocity, as well as any other motions over time) of your coordinates

New Types of Coordinates

Reported

– "Coordinates directly reported to NGS without the data necessary for NGS to replicate or evaluate them. These coordinates are neither 'part of the NSRS' nor 'tied to the NSRS.'"

- Scaled from a map
- Transformed using NCAT or VDatum
- Smartphone
- Reported directly from an RTK rover without data files

Reported Coordinates

Buyer Beware!

Reported coordinates might be very wrong!

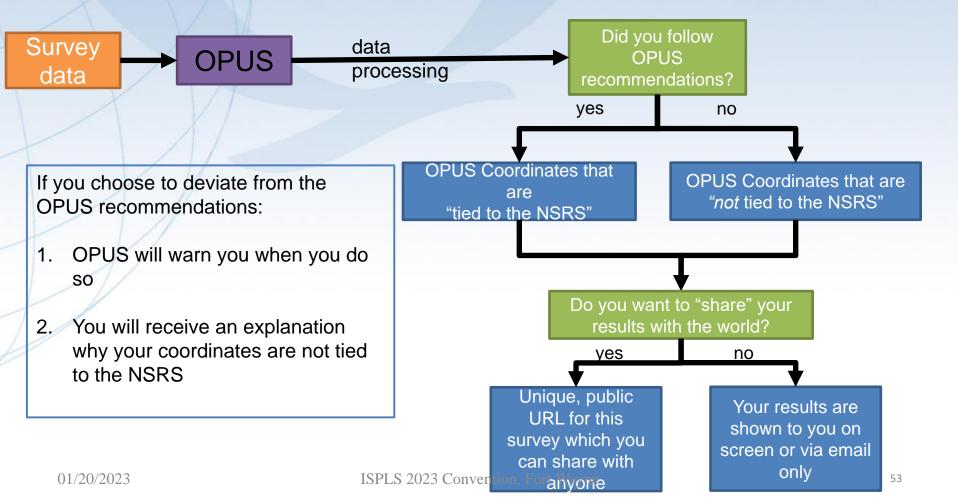
- Reported in NAD 27 or NAD 83 or WGS 84
 - Systematic Error: 2–100 meters
- Scaled off of a USGS topographic map
 - Random Error: ± 600 meters
- Smartphone
 - Random Error: ± 10–50 meters

NGS will show you reported coordinates

 But their function is to get you "in the neighborhood" of a mark, not to use as geodetic control!

New Types of Coordinates

OPUS


"Coordinates computed by OPUS that have not been evaluated by anyone at NGS. As these coordinates are not computed by NGS they are not considered "part of the NSRS." However, if NGS-provided OPUS recommendations are followed, they may be 'tied to the NSRS.'"

- User-computed values, such as they might get today from either OPUS-S or OPUS Projects
- "OPUS" coordinates are the *only* coordinates a user will get directly from OPUS
- NGS will not evaluate your OPUS coordinates!

New Types of Coordinates

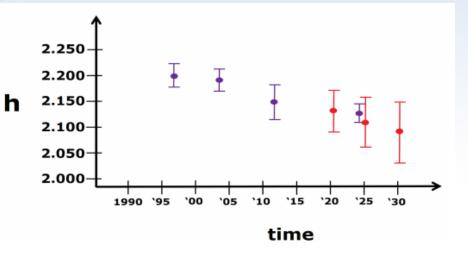
- **OPUS** coordinates <u>may</u> also come with the label "tied to the NSRS"
 - Only if a user restricts their computations to OPUSrecommended constraints
 - Users who deviate from OPUS-recommended constraints can still perform computations and will get OPUS coordinates, but they will not be "tied to the NSRS", nor have any NSRS label at all.
 - In neither case will OPUS coordinates be considered "*part of the NSRS*" however.

geodesy.noaa.gov

New Types of Coordinates Reference epoch coordinates (RECs) "Coordinates estimated by NGS for one of the official reference epochs. As these coordinates are computed by NGS they are considered 'part of the NSRS'"

- These will be computed by NGS every 5 or 10 years
 - On a schedule 2–3 years past the reference epoch

New Types of Coordinates

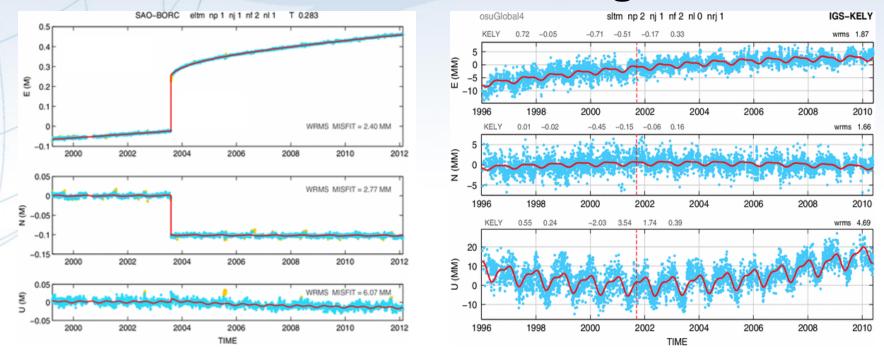

Survey epoch coordinates (SECs)

"Coordinates computed by NGS for one survey epoch. As these coordinates are computed by NGS they are considered 'part of the NSRS.""

- These represent the best estimates NGS has of the time-dependent coordinates at any mark
- Adjusting multiple surveys in timespans called "adjustment windows", to a single epoch within that window.
 - Initial plan: 4 weeks for GNSS; 1 year for leveling

More on SECs and RECs

- At passive control
- SECs: adjusted to a midpoint epoch near the survey
 - (4 weeks for GNSS; 1 year for leveling)
- RECs: adjusted to a ref. epoch (2020.00, etc.)
- REC adjustments will include Some *age-limited* span of data
 - If that age-limit were 10 years prior and 2 years post R.E., Then 2020.00 RECs come from data spanning 2010.00 to 2021.99999



New Types of Coordinates Active coordinates (ACs)

 Coordinate functions in time, generated by NGS, and not associated with a specific epoch. As these coordinates are computed by NGS (or adopted by NGS) they are considered "part of the NSRS."

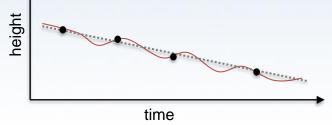
 Which will be generated by a "fit" to regularly computed coordinates

Examples of How Non-Linear CORS Coordinate Functions Might Look

ISPLS 2023 Convention, Fort Wayne

geodesy.noaa.gov

Published Coordinates

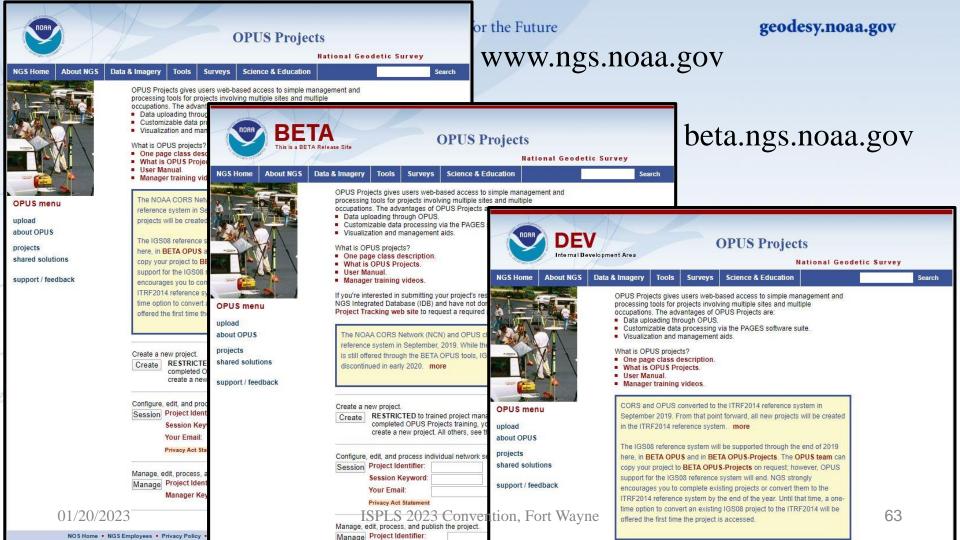

• **RECs** 'stable' at project scales (5-10 years)

geodesy.noaa.gov

Published Coordinates

- RECs 'stable' at project scales (5-10 years),
- SECs reflective of narrow window in time
- ACs or Coordinate Function at CORS

SPLS 2023 Convention, Fort Wayne

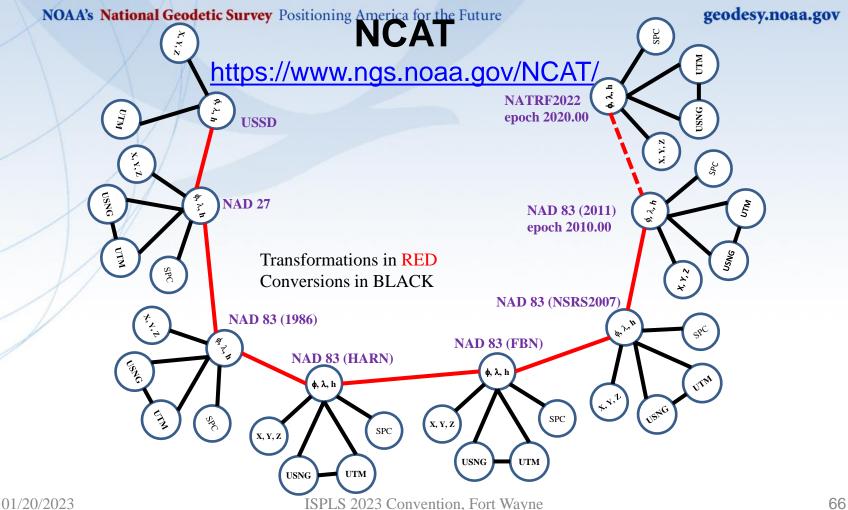

Coordinates

- Five types:
 - Active: Continuous functions at a CORS
 - Survey Epoch: "Time dependent coordinates"
 - Reference Epoch: "Estimated at 2020, 2025, 2030, …"
 - OPUS: Computed by you, and as accurate or inaccurate as the choices you make
 - Tied to the NSRS if you follow OPUS recommendations
 - Reported: Good for finding a point somewhere on Earth.
 - Not to be used as geodetic control

geodesy.noaa.gov

NGS TOOLS AVAILABLE

ISPLS 2023 Convention, Fort Wayne


NGS Products and Services

- Not just OPUS
- All exist in three environments:
 - **Development** (DEV) internal testing and development
 - same as when you hear a company talk about an "Alpha" product
 - Beta continued internal testing, open for public testing
 - key features have already been vetted/tested
 - Production final product, open to public use
 - this is what you see first when navigating our website

NOAA's National Geodetic Survey Positioning America for the Future Geodesy.noaa.gov NGS Coordinate Conversion and Transformation Tool (NCAT)

- Converts between types of coordinates
- Transforms between datums
- Works with vertical and horizontal datums in the NSRS

geodesy.noaa.gov

OPUS-PROJECTS UPDATES

ISPLS 2023 Convention, Fort Wayne

geodesy.noaa.gov

What is **OPUS**?

- OPUS-S (static processing, 2-48 hours)
- OPUS-RS (rapid-static, 15 minutes – 2 hours)
- Sharing database of solutions
- OPUS Projects
 - campaign style surveyprocessing, adjustments, publication

Share GPS observations through OPUS

- Upload 4+hour GPS observation file
- Provide antenna type, antenna height, and email address
- Click "Options" & Select "Yes, Share"
- Identify the Mark by PID
- Write a "To Reach" description
- Attach 2 photos: Close up & Horizon
- Respond to confirmation email

How to Submit an OPUS Share Observation Tutorial

The purpose of this tutorial is to explain the steps needed to submit an OPUS Share observation in the context of supporting the GPS on Bench Marks campaign.

geodesy.noaa.gov/corbin/class_description/opus-share-tutorial/

Why use OPUS-Projects?

- Supports both static GPS and RTK GNSS surveys
- Organizes data for multiple occupations on more than one mark ۲
 - Campaign-style surveys for control
- Performs least squares adjustments of control survey networks
 - Estimate relative accuracy between marks
- Constrains NAVD 88 bench marks check/establish NAVD 88 heights
- Ensures survey is tied to the NSRS
 - CORS data and published coordinates/heights
 - Official models (HTDP, GEOID18) —
- Submits survey to NGS for review, loading in database, and • publication on datasheets
 - Establishment of geodetic control
 - NGS will use data for making models (e.g., future transformation model for the new datums) ISPLS 2023 Convention, Fort Wayne

OPUS-Project 4.0

- Currently on Production
- What does this version add?
 - Allows you to submit campaign style GPS survey to NGS for inclusion in the IDB (Integrated DataBase)
 - Upload GPS data to OPUS-S
 - Upload photos and mark descriptions
 - Process simultaneous/overlapping sessions
 - Run network adjustment (using GPSCOM and ADJUST)
 - Click the "Submit" button to send to NGS!

(must be created using WinDesc)

OPUS-Projects 5

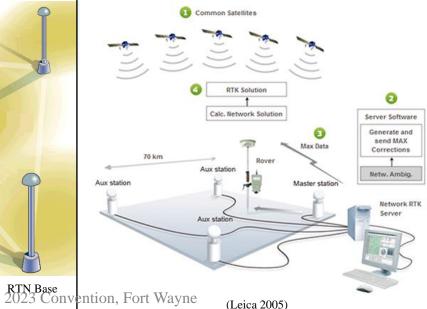
- Available on BETA at: <u>https://beta.ngs.noaa.gov/OP-</u> bluebook/OpusProjects.shtml
- Continues to support static GPS baseline processing and network adjustments
- Continues to prepares all files according to FGCS Bluebook for submission to NGS for loading in the NGS Integrated Database and publication on Datasheets
- Supports GVX \rightarrow uploading of previously processed GNSS vectors
 - Single-base RTK vectors
 - Network RTK vectors
 - Vectors post-processed in other software
- Automatically "weights" uploaded vectors in a network least squares adjustment

geodesy.noaa.gov

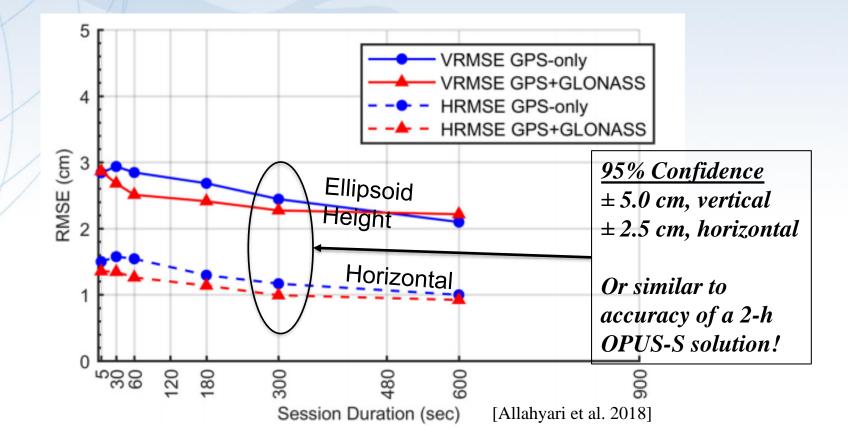
Real-Time Networks

Virtual Reference Stations (VRS)

- Vector "tails" referenced to virtual base station
- Base station position is variable


RTN Base **RTN** Base VRS Control Center

(Landau et al. 2002)


ISPLS

Master-Auxiliary Concept (MAC)

- Vector "tails" connected to physical base station
- Base station position is fixed

Empirical Evaluation of the Accuracy of RTNs

<u>G</u>NSS <u>V</u>ector e<u>X</u>change (GVX)

Hyperlink to GVX Info Page

- Detailed documentation, Schema, and Example File available
- Any major search engine: "ngs gvx file format"
- Open standard for anyone to use or integrate

GVX is sort of like... RINEX for RTK/RTN

GVX ≈ RINEX for RTK/RTN data

RINEX

Uncorrected **Observations**

- That's why we post-process them
- Static Observations
- One observation per file

Proprietary Format \rightarrow Open Standard • Export RINEX using your COTS software

Metadata

• Antenna, Rx, HI, Point Name, Start Time, SVs at each epoch

Based on ASCII Text File Format

• Longtime industry standard - Way too many to list!

Corrected/Processed **Positions**

• And the Vectors used to create them

RTN, RTK, PP Static, even PPK

• Many observations, any mix of above

Proprietary Format \rightarrow Open Standard

• Export GVX using your COTS software

Metadata - same as RINEX, *plus*...

• Project Info, Solution Types, PDOP, Mount Points, Correlation Matrices, OC data

GVX

Based on XML File Format

• Longtime industry standard -e.g. LandXML, JXL, MAXML, KML/KMZ

Status of GVX Exporters

...that we know of.

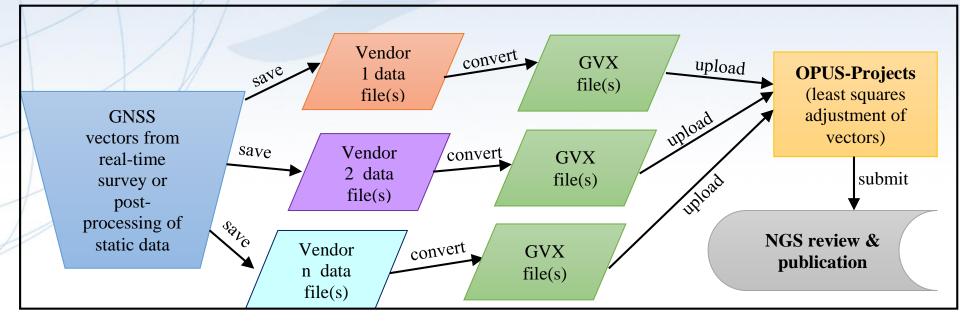
Available Now

- Trimble Business Center (TBC) v5.60 released Nov 2021
- Topcon MAGNET Software v7.2 released Nov 2021
- Leica Infinity 4.0.0 released May 2022

<u>Developers who have expressed interest to us</u>

- iGage
- Carlson
- Emlid

Available, but not fully functional


• JAVAD J-field - onboard Triumph-LS device

jage

geodesy.noaa.gov

GVX Flow Chart

Steps for Submitting a Survey to NGS

- 1. Submit a <u>survey project proposal</u> and obtain a project tracking ID
- 2. Create descriptions for marks in WinDesc. <u>Tutorial video</u> available
- 3. Upload all static data via Beta OPUS-S
- 4. Upload GVX file(s)
- 5. Upload description files from WinDesc
- 6. Perform session baseline processing
- 7. Run all 5 network adjustments
- 8. Upload 3 photos per mark (close-up of mark, horizon photo, and downward from eye-level)
- 9. Upload observation logs (as a single PDF), and a project report
- 10. Submit to NGS (button not enabled on Beta)

All but step 4 is currently explained

01/20/2023

Guidance for RTK Surveys

Table 11-2. Recommended Number and Duration of Network RTK Observations on Marks to Meet Certain Vertical (Ellipsoid Height) Accuracy Standards at 95% Confidence in OPUS-Projects.

> Number of repeat network RTK observations

/	Vertical standard (cm)	GPS-only	GPS + more (GNSS)	Observation duration (min)	Minimum epochs used
	3.0	3	3	5	300
	2.5	4	3	5	300
	2.0	6	5	5	300

geodesy.noaa.gov

Equipment Setup

When using VRS, store points as <u>vectors</u>

Survey type			Broadcast format		
RTK	•		VRS (CMR)	•	
Antenna					
Туре			Measured to		
R10-2 Internal	•		Bottom of quick release	•	
Antenna height			Part number		
2.000m		•	90912-xx		
Serial number					
?					
Store points as					
Vectors	•				
levation mask					
10°		•			
PDOP mask					
6.0		•			

2.

geodesy.noaa.gov

Three Cases for RTK/RTN Bases

- Automatically attaches GVX vectors to official coordinates for CORS
- Constrain CORSs

RTK/RTN Base = Not a CORS and new to NGS

- Upload static GPS data logged at the base during the days of the RTK survey
- Perform session baseline processing to connect to CORSs
- Constrain CORSs

but has a datasheet Greenmount Hampstead Upperco Sprks Glembe Phoe Finksburg

RTK/RTN Base = Not a CORS

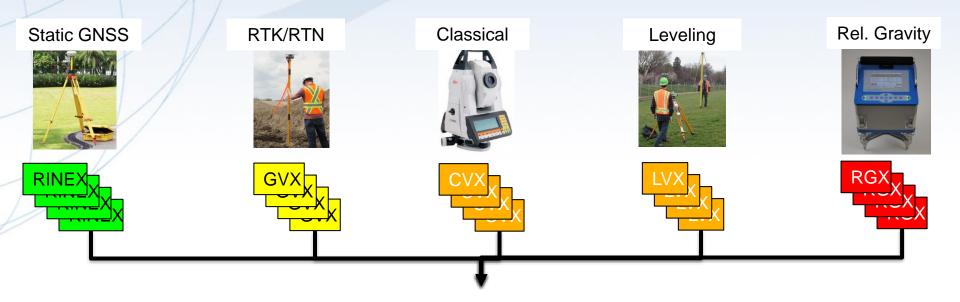
3.

٠

٠

- Could constrain coordinates on datasheet
- Or, upload static data at the RTN base, logged during the days of the RTK survey; perform session baseline processing; constrain CORSs

Future Directions


- Perform Beta Testing and respond to feedback from users
 - Provide your feedback! <u>NGS.Feedback@noaa.gov</u>
- Finish OPUS-Projects 5 development and enable "submit" button
- Update OPUS-Projects User Guide materials to include GVX workflow
- Draft new guidelines for surveying with RTK/RTN to replace NGS-58/59

geodesy.noaa.gov

Brief overview: Re-inventing "Bluebooking" or

<u>The Modernized OPUS</u> <u>AKA</u> <u>"OPUS 6"</u>

Future of OPUS

geodesy.noaa.gov

Future of OPUS

- Upload multiple types of data and multiple files into a single survey project
- Process RINEX into a position
- Process RINEX into mark-to-mark vectors
- Process Classical into mark-to-mark angles/distances
- Process Leveling into mark-to-mark ortho. differences
- Process Relative Gravity into mark gravity
- Combine GNSS, RTK/N, Classical in a Geometric Adjustment
- Combine Classical and Leveling in an Orthometric Adjustment

- Adjust Relative Gravity for either gravity or vertical gradients in a Gravimetric Adjustment
- Special settings for "Calibration Base Lines"
- Choose your epoch and frame
- All coordinates returned are "OPUS Coordinates"
- Submit your data to NGS for QA/QC, database loading, and improvement of future passive mark coordinates (RECs and SECs)

geodesy.noaa.gov

The future of datasheets **DATA DELIVERY SYSTEM**

ISPLS 2023 Convention, Fort Wayne

Data Delivery System

- The Data Delivery System (DDS) is a system for querying the new NSRS database
 - The most common query will be for a new version of datasheets
 - But other queries will be part of the DDS
 - Mark recovery and mark reporting
 - Active control (CORSs)
 - Projects, observations, data, etc.

PROGRAM = datasheet95, VERSION = 8.12.5.14 Starting Datasheet Retrieval... 1 National Geodetic Survey, Retrieval Date = DECEMBER 14, 2021 DE9524 DESIGNATION - SP 0109 DE9524 PID DE9524 DE9524 STATE/COUNTY- IL/SANGAMON DE9524 COUNTRY - US DE9524 USGS QUAD - SPRINGFIELD WEST (2018) DE9524 DE9524 *CURRENT SURVEY CONTROL DE9524 DE9524* NAD 83(2011) POSITION- 39 49 41.85939(N) 089 39 02.64176(W) ADJUSTED DE9524* NAD 83(2011) ELLIP HT- 147.185 (meters) ADJUSTED (06/27/12)DE9524* NAD 83(2011) EPOCH - 2010.00 DE9524* NAVD 88 ORTHO HEIGHT - 179.776 (meters) 589.82 (feet) ADJUSTED DE9524 DE9524 GEOID HEIGHT -32,579 (meters) GEOID18 DE9524 NAD 83(2011) X -29,900.259 (meters) COMP DE9524 NAD 83(2011) Y - -4,904,962.342 (meters) COMP DE9524 NAD 83(2011) Z - 4,063,456.865 (meters) COMP DE9524 LAPLACE CORR 1.42 (seconds) DEELEC18 DE9524 DYNAMIC HEIGHT -179.677 (meters) 589,49 (feet) COMP DE9524 MODELED GRAVITY -980,077.1 (mgal) NAVD 88 DE9524 DE9524 VERT ORDER SECOND CLASS I DF9524 DE9524 Network accuracy estimates per FGDC Geospatial Positioning Accuracy DE9524 Standards: DE9524 FGDC (95% conf. cm) Standard deviation (cm) CorrNE DE9524 Horiz Ellip SDN SDE SDh (unitless) DE9524 DE9524 NETWORK 0.59 1.37 0.27 0.20 0.70 -0.03058419 DE9524 DE9524 Click here for local accuracies and other accuracy information. DE9524 DF9524 DE9524. The horizontal coordinates were established by GPS observations DE9524.and adjusted by the National Geodetic Survey in June 2012. DE9524 DE9524.NAD 83(2011) refers to NAD 83 coordinates where the reference frame has DE9524, been affixed to the stable North American tectonic plate. See DE9524.NA2011 for more information. DE9524 DE9524. The horizontal coordinates are valid at the epoch date displayed above DE9524.which is a decimal equivalence of Year/Month/Day. DE9524 DE9524. The orthometric height was determined by differential leveling and DE9524.adjusted by the NATIONAL GEODETIC SURVEY DE9524.in September 2015. DE9524 DE9524. Significant digits in the geoid height do not necessarily reflect accuracy. DE9524.GEOID18 height accuracy estimate available here. DE9524 DE9524.Click photographs - Photos may exist for this station. DE9524

DE9524. The X, Y, and Z were computed from the position and the ellipsoidal ht.

a for the Future

geodesy.noaa.gov

- Datasheets are the current way to access the NSRS
- Give information about passive marks, including coordinates

nvention, Fort Wayne

The Data in the Datasheet

	Starting Datasheet Retrieval1National Geodetic Survey, Retrieval Date = JULY 1, 2022AC6803*********************************
<pre>{"datasheet": { "datasheetHeading":"National "datasheetRetrievalDate":"JU "htMod":"This is a Height Mo "pacs":"This is a Primary Ai "determinedProjects":[</pre>	DLY 1, 2022", Deternization Survey Station.",
{"project":"GPS2846"}], "observedProjects":[{"project	<pre>'GPS2300"},{"project":"GPS2507"},{"project":"GPS280"}, ct":"GPS1154"},{"project":"GPS1195/11"},{"project":"GPS2507"}], ct":"GPS1154"},{"project":"GPS1195/11"}], </pre>
••• } } 20/2023	ISPLS 2023 Convention Fort Wayne

geodesy.noaa.gov

Beta Passive Marks page

- Easier to read
- Includes geospatial information
- A preview of the future data delivery system

	BE1 This is a BETA		Nati	ional G	Geodetic Sur	'VEY ning America for the Future
NGS Home	About NGS	Data & Imagery	Tools	Surveys	Science & Education	Search
			Pas	sive Mark P	age	

***Note: This page does not work with Internet Explorer.

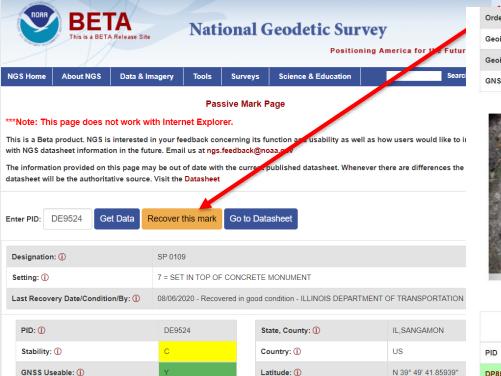
This is a Beta product. NGS is interested in your feedback concerning its function and usability as well as how users would like to interact with NGS datasheet information in the future. Email us at ngs.feedback@noaa.gov

The information provided on this page may be out of date with the current published datasheet. Whenever there are differences the datasheet will be the authoritative source. Visit the Datasheet

Enter PID:	JV3192	Get Data
Enter a PID	above to con	tinue

Enter a PID above to continue.

NOS Home • NGS Employees • Privacy Policy • Disclaimer • USA.gov • Ready.gov • Site Map • Contact Webmaster


https://beta.ngs.noaa.gov/datasheets/passive-marks/index.html

geodesy.noaa.gov

Beta Passive Marks page

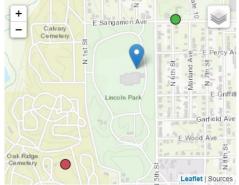
W 089° 39' 02.64176"

ISPLS, 2023 Cor

Longitude: (i)

Ellipsoid Ht.: (i)

179.776


NAVD 88

Orthometric Ht. (m): (i)

Vertical Datum: @0/2023

Order/Class:	2/1	Position Source: ()	ADJUSTED
Geoid Ht (m).: ()	-32.579	Network Accuracy Hz (cm): ()	0.59
Geoid Model: ()	GEOID18	Network Accuracy Ellip (cm): ①	1.37
GNSS Ortho Ht. (m): ①	179.76	Ortho Ht. Residual (cm): (j)	-1.2

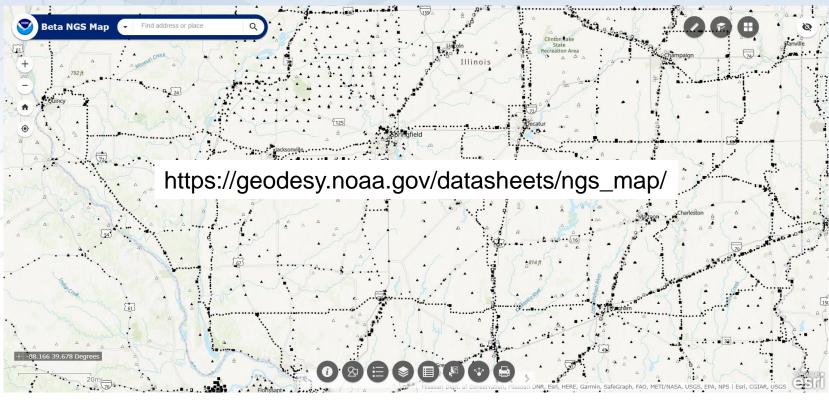
Nearby Marks ①								
PID	Designation	Position Source	Vertical Source	Condition				
DP8505	ELLER	HD_HELD1	ADJUSTED	MONUMENTED				
KB1487	SPRINGFIELD LINCOLN MONUMENT	ADJUSTED		GOOD				

geodesy.noaa.gov

Beta Passive Marks page

	-/	7.47												
Superseded Values						Descriptive Information					Hide			
NAD 83(2007)- 39 49 41.85953(N) 089 39 02.64247(W) AD(2002.00) 0							PID: ()		DE9524	Designat	ion (j)	SP 0109		
ELLIP H (02/10/07) 147.201 (m) GP(2002.00)						Setting Agency: ①		CMT	Setting D	Date: ①	20020611			
ELLIP H (02/03/05) 147.189 (m) GP() 4 2						Marker Type: ()		DD	Magnetic	: Code: ()	В			
NAD 83(1997)- 39 49 41.85960		D() 1						Stability Code: ()		С	Setting C	Class: 🕕	7	
								Setting Phrase: ①			Logo: ()		CMT	
ELLIP H (01/15/03) 147.204 (m) GP() 3 1						Stamping: 🕕		SP 0109	UDG Mar	·k Туре: (])				
NAVD 88 (01/15/03) 179.7 (m) GEOID99 model used GPS OBS					- 1	UDG Magnetic Code: ()			UDG Mar	k Stability: 🕕				
						UDG Mark Setting: ()			UDG Mar	k Set Date: 🕕				
Projects						Rod/Pipe Depth: (j)			Sleeve D	epth: ()				
Leveling Projects Hid				lide	Position Source: ①		А	Position	Quality: ①	0				
L28166								Position Technique: ①		G	Alias: 🕕		0109	
Start Date: 01/0	06/2015	Order:	2	Agency:		AMESC				Des	criptive Text			Hide
End Date: 03/2	27/2015	Class:	1	BM Count:		168		Recovery Date:	08/06/2020	c	ond:	Recovered in good condition		
GPS Projects						F	lide	COP:	DL	A	gency:	ILDT		
GPS2183								*						
Start Date:	10/13/2005	End Dat	e:		10/13/200	5		Recovery Date:	09/10/2014		Cond:	Recovered in good condition	ı	
Agency:	NGS	Obs. Co	unt:		13			COP:	ТНН		Agency:	AMESC		
01/20/202	10					2023 001	T Y					.7 M) NORTHWEST OF THE NORTH 4.9 FT (19.8 M) NORTH OF THE NO		

Easy to use mark recovery tool https://geodesy.noaa.gov/cgi-bin/mark_recovery_form.prl


3	Mark Recovery Form	e
		Lite Version: Off
Find marks near me		Info found for PID- DE9524
	Marker ID	
PID: ①	DE9524	
Designation: ①	SP 0109	
Stamping: ①	SP 0109	
Latitude: ①	N394941.85939	
Longitude: ①	W0893902.64176	
Country: ①	US	
State: ①	Γ.L.	
County: ①	SANGAMON	
	Recoverer ID	
Your Agency Type: ①	Select agency code Recovery Agency: ①	~
Date mark was recovered: ①	YYYYMMDD Use today's date	
Name: ①	ex. John Smith	
Email: ①	ex. JohnSmith@gmail.com	

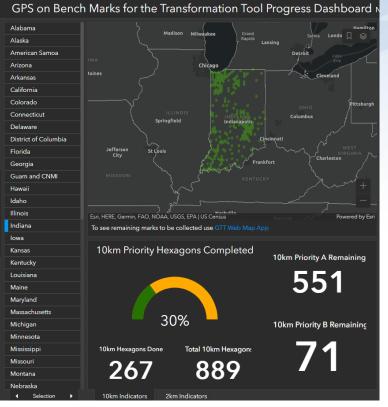
01/20/2023

Privacy Statement: Your name and email address will be used only to contact you if there is a problem in loading your recovery. They will not be used for any other purpose

geodesy.noaa.gov

NGS Map

ISPLS 2023 Convention, Fort Wayne


geodesy.noaa.gov

GPS ON BENCH MARKS

ISPLS 2023 Convention, Fort Wayne

geodesy.noaa.gov

GPS on Bench Marks

01/20/2023

• Priority Map:

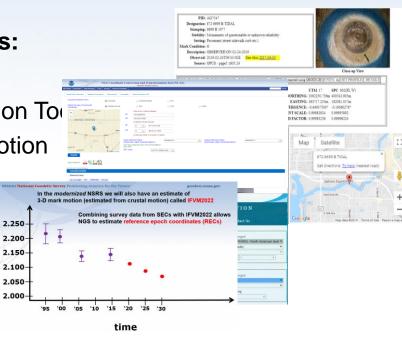
https://noaa.maps.arcgis.com /apps/webappviewer/index.h tml?id=6093dd81e9e94f7a9 062e2fe5fb2f7f5

https://geodesy.noaa.gov/GP SonBM/

ISPLS 2023 Convention, Fort Wayne

97

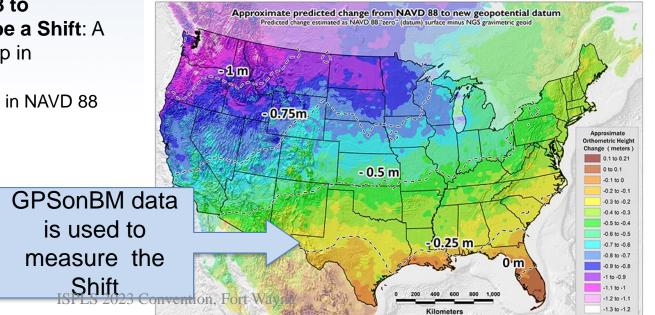
NOAA's National Geodetic Survey Positioning America for the Future geodesy.noaa.gov GPS on Bench Marks - What & Why?


GPS on Bench Marks is about preparing the country and our communities to take full advantage of the benefits of the Modernized NSRS, by collecting new GPS observations on bench marks with published NAVD 88 heights.

Primary GPSonBM Campaign Benefits:

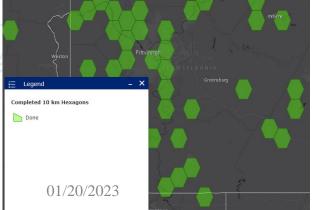
- 2020.0 Reference Epoch Coordinates (REC's) Data for NAVD 88 – NAPGD2022 Transformation To
- Build time series of observations in areas of motion

Added benefits:


- Evaluate gravimetric geoid models
- Check your RTN results
- Update and maintain passive control marks
- ⁰¹/2022 Convention, Fort Wayne

NOAA's National Geodetic Survey Positioning America for the Future geodetic Survey Positioning America for t geodesy.noaa.gov **Current and Future Datums**

The relationship between the old and new datums vary by location. GPSonBM data is used to measure that relationship. The accuracy of the transformations in any particular place will be directly related to the density of GPSonBM data available in that area.


In moving from NAVD 88 to NAPGD2022, there will be a Shift: A one-time 0 to 2 meter jump in -1m orthometric heights -From fixing biases and/or tilts in NAVD 88 -0.75m Approximate predicted change from NAVD 88 to new geopotential datum Orthometric Heigh Change (meters -0.3 to -0. -0.5 to -0 - 0.5 m -0.7 to -0 -0.9 to -0 -1.1 to -0 **GPSonBM** data -1.5 to -1 -1.7 to -1. 1.25 m -1.9 to -1. is used to -2110-19 -'0.25 m measure the convention.

2022 Transformation Tool Campaign

NGS will make a **national scale**, **mapping grade** transformation tool with the data we have in the NGS Database and Shared through OPUS. We must interpolate over areas with data gaps. Uncertainties in the transformed coordinates will grow larger as the distance from a GPSonBM data

point increases.

NOAA's National Geodetic Survey Positioning America for the Future geodesy.noaa.gov Data Contribution Routes

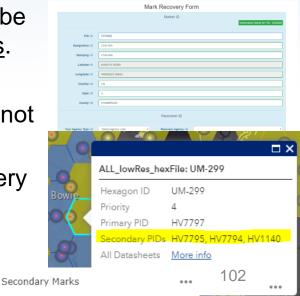
WHAT DATA?	via OPUS option "share my solution" share my solution Yes, share minimal one receiver, one 4+ hour observation	via OPUS option "project ID" project identifier more; many receivers, redundant sessions, network adjusted by project manager		
USE, in transformation tool	Will be used in modeling, existing BMs only (with published ortho heights)	Will be used in modeling, all marks, as projects publish new NGS datasheets with ortho heights		
USE, in <i>current</i> generation datasheets	for all marks, results appear as 'shared solutions' = not published geodetic control for existing BM datasheets only, updates "SCALED">"HD_HELD2" coordinates	for all marks, results appear as NGS datasheets = published geodetic control		
USE, in <i>next</i> generation datasheets 01/20/2023	will be published with 2020.00 F			

see also, mark recovery to update mark descriptions and add photos

GPSonBM Q&A

Q: What is the deadline to submit GPSonBM for the Transformation Tool?

A: **September 30, 2023**– so that observations can be used to create 2020.0 Reference Epoch Coordinates (See Blueprint 3 -Working in the Modernized NSRS)


Q: Can we submit previous observations?

A: Yes! Observations made within the past 3 years may be submitted if you have the required metadata and pictures.

Q: What do we do if we can't find the priority mark or if it not observable with GPS?

A: 1) Submit a Mark Recovery with the new Mark Recovery Form.

2) Find and observe an secondary mark listed in the hexagon layer on the web mapLS 2023 Convention, Fort Wayne

GPSonBM Q&A

Q: Can we submit offset observations for marks that are not GPS-able? A: Not for now, unless you follow the NGS <u>Mark Reset Procedures</u>. In the future, OPUS 6.0 will enable you to process and adjust GPS, leveling, and total station observations together, and submit them to NGS.

- Q: Can we submit less than 4 hours of data?
- A: Yes, but only by using OPUS Projects to Bluebook the data.
- Q: Can we submit RTK observations?

A: YES! The recently released BETA version of OPUS Projects 5.1 enables processing of Hybrid Survey Networks that include both static and real-time observations uploaded in the new GVX vector exchange ^{01/20/2023} ISPLS 2023 Convention, Fort Wayne 103

Required Metadata for GVXonBM

- WinDesc Files \rightarrow 1 each of .dsc, .des, .err, .dis, .nbr
 - Yes, for the foreseeable future you will need to download, install, and learn how to use WinDesc
- 3 photos per mark \rightarrow uploaded to Marks Pages
 - 1. close-up
 - 2. downward from eye-level
 - 3. horizon/setup
- Project Report (PDF)
- Observation Logs (single PDF)

geodesy.noaa.gov

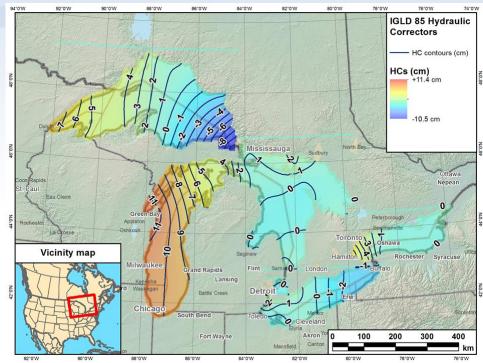
Resources

- Survey Project Proposal Page
- <u>WinDesc Tutorial Video</u>
- OPUS Projects User Guide (HTML version)
- **OPUS Projects User Guide (PDF version)**
- <u>Requirements for Using OPUS-Projects 5 in the 2023 GPSonBM Campaign</u>

geodesy.noaa.gov

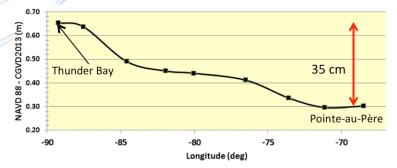
IGLD UPDATE

ISPLS 2023 Convention, Fort Wayne


What is IGLD?

- International Great Lakes Datum (IGLD) is a common height reference system by which water levels can be measured and meaningfully related to each other
- Joint effort between the United States and Canada
- Maintained by the Coordinating Committee on Great Lakes Basic Hydraulic and Hydrologic Data
- Due primarily to Glacial Isostatic Adjustment, IGLD is updated every 25-35 years
- The next update will be IGLD (2020)

geodesy.noaa.gov

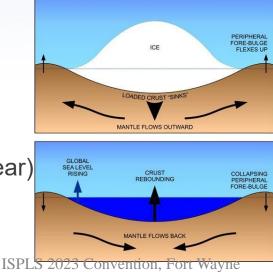

Current IGLD

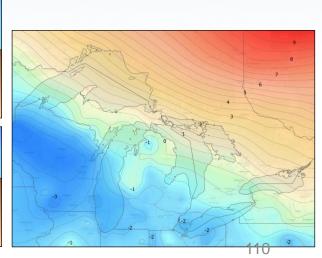
- IGLD (1985) replaced IGLD (1955) in 1992
- Same reference zero as NAVD 88 (at Pointe au Père, Québec)
- Surface determined by leveling
- Dynamic heights
- Hydraulic correctors

IGLD (1985) Reference Surface

- Reference surface is each lake (equipotential surface) to which heights are referenced
- IGLD 1955 & 1985 used 1000's miles of geodetic leveling to indirectly define the reference surface
 - Very time consuming & cost prohibitive
 - Datum accessible only where leveling exists (benchmarks)
 - Susceptible to accumulation of systematic errors
 - Extends the reference zero inland

01/20/2023


ISPLS 2023 Convention, Fort Wayne


Why a new IGLD?: Glacial Isostatic Adjustment – (GIA)

Process of Glacial Isostatic Adjustment (left) and the resulting tilting of the entire Great Lakes region (right) as determined by high accuracy GPS measurements in units of mm/year. M. Craymer and C. Wisotzkey, 2021.

Entire basin is:

- Uplifting in north
- Subsiding in south
- Overall tilting ~7 mm/year (21cm or 0.7' over 30 year)
- Need to update IGLD every 25-30 years

Definition of IGLD (2020)

Reference Zero

- $W_0 = 62,636,856.00 \text{ m}^2/\text{s}^2$ that the U.S. and Canada have adopted for the new geoidbased North American-Pacific Geopotential Datum of 2022 (NAPGD2022) & Canada has already adopted for the Canadian Geodetic Vertical Datum of 2013 (CGVD2013)

• Realization of the Reference Surface

 NAPGD2022 geoid model representing the reference zero everywhere over the Great Lakes – St. Lawrence River system, not only where leveling and bench marks exist

Reference Epoch

– 2020.0, the central epoch of the 7-year water level observation period of 2017–2023

Dynamic Height

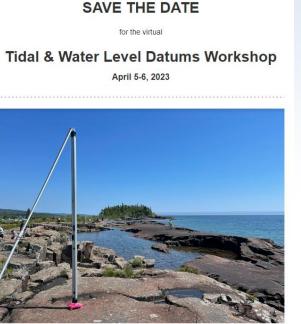
- IGLD (2020) will use dynamic heights derived from GNSS occupations
- The dynamic height represents the difference in potential above the reference surface and is the same at all points on a level surface

Status of IGLD Update

- GNSS field campaign took place in 2022 data processing continues
- Seasonal gauging continues
- Hydraulic corrector working group is investigating the need for HCs in IGLD (2020)
- IGLD (2020) is planned for release about one year after the release of the NAPGD2022 vertical datum (around 2026)

geodesy.noaa.gov

2022 IGLD GNSS Campaign


Home ♥ IGLD Combined Planning Final Open in Map Viewer New Map 🐃 📃 Jacob 🐃 🔚 Save 🚽 📼 Share 🛛 🖨 Print 🚽 | 🚸 Directions 🚆 Measure 🔟 Bookmarks 🛛 Find address or place 🔚 Details 🛛 📩 Add 👻 🛛 🦯 Edit 🛛 🔡 Basemap Q 8/8 PUKI LU + 8/8 025J JL 8/4 BORY BG 8/8 T139 BG 155 8/11 020C BG 1 8/1 NORT JL 8/11 WHFS KF 50 8/4 BOR5 LD 8/11 018K LD _ 8/15 UNIT USACE Shawinigan 8/11 013C JL 41 8/15 027C JM Elliot Lake 0 Trois-Rivieres North Bay 8/15 199A PM 8/11 0963 33 8/15 DOCK KF 8/11 ESRM JM 8/18 MACK BG 8/11 091D PM 53 8/15 BRIV CG 8/18 C306 LD 8/8 089E JH Short St-Jean-sdr-Richelieu 8/1 012H JM 8/8 035A KF 8/18 506G JL 9/8 NYP7 JI 9/8 BM05 JJ 9/5 WADD JH 8/18 057H JM 8/8 STUR PM 8/1 010G JM Eau Claire 5 030H KF 8/1 018A PM 9 Orilliz Green Bay 8/8 068H JM Owen Sound 9/8 ECHO JJ 8/18 SPIR PM 9/5 2LMN CG 31 8/4 AE06 USACE Montpeli OOFR JJ **8/4 AE07 USACE** 9/8 9049 DM 8/18 NOPO JJ 9/5 0128 PM 8/1 H315 JJ Rochester 8/22 014J LD **8/4 AE09 USACE** Markham 8/18 031G JH ond du Lac Sheboygan 8/18 ESSB KF 9/8 LCWN DM 9/5 025A JL Manistee Toronto 9/5 030D LD 8/22 011B JJ Oakvil 9/1 0585 JH 9/5 MON6 BG Michigan Kitchener 9/1 FNC1 JJ 8/1 028B CG 8/22 7770 PM Hamilton 071.007J PM Rochester MINAL MILW JH 8/22 4093 JM Green Mountain 9/1 STA1 USACE vracuso Grand Rapids 8/22 080F CG Buffalo New York 8/1 CRIB KF 8/29 028L JH 8/25 057G BG Lansing 8/22 405A JH 8/29 471A KF 8/4 W792 KF 8/29 EA74 CG 205 8/25 FTWADE 86 Ann Arbor Rockford 8/29 D362 JJ 90 8/1 USHU JH 8/25 H115 PM Springfield 8/25 E234 JJ 8/29 ASH1 PM Cedar Rapids ChRAGOAE15 USACE 8/29 053D JM 8/4 038A JM 8/25 097E JH Hartford Aurora South Bend 15 8/29 Z317 BG 8/29 F322 LD Waterbury 8/29 OW 6 By land Province of Ontario, Earl Canada, Earl, HERE Garmin, FAO, NOAA, USGS, EPA, NPS, NRCan, Parks Canada

01/20/2023

ISPLS 2023 Convention, Fort Wayne

Save the Date! Water Level Datum Workshop

- NOAA, the Canadian Hydrographic Service (CHS), and the Coordinating Committee on Great Lakes Basic Hydraulic and Hydrologic Data would like to invite you to a virtual workshop on Tidal and Water Level Datums. Participants will have the opportunity to learn more about the datums and impacts on the coastal, navigation and shipping communities and industries.
 - April 5: National Tidal Datum Epoch (NTDE)
- <u>April 6</u>: International Great Lakes Datum (IGLD) and the Low Water Datum (LWD)
- The workshop will feature presentations and discussions from NOAA's Center for Operational Oceanographic Products and Services, the National Geodetic Survey, and the Office of Coast Survey, as well as U.S. Army Corps of Engineers, CHS, Natural Resources Canada, Environment and Climate Change Canada, and others.

Save the Date! NGS day at FIG 2023

NGS will present a full day's worth of content at the 2023 FIG Working Week in Orlando, FL on May 31, 2023

https://fig.net/fig2023/

FIG 2023 Working Week

Save the Date: NGS @ FIG - May 31, 2023

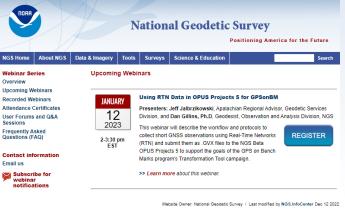
NGS will be presenting a full-day's worth of content on NSRS Modernization during the FIG Working Week 2023 meeting taking place at the end of May 2023 in Orlando, Florida. For the first time in over 20 years, this annual gathering of the International Federation of Surveyors will be taking place in the United States, hosted by the National Society of Professional Surveyors (NSPS).

The International Federation of Surveyors (FIG) is a United Nations and World Bank recognized nongovernmental international professional organization. FIG was founded in 1878 and represents national associations of surveying, cadastre, valuation, national mapping professionals, geospatial experts and quantity surveyors working in both the public and private sectors, in the scientific, research and academic community, as well as from technology innovators and industry from more than 120 countries around the world.

We encourage you to attend the entire event and be sure to join us on the Wednesday after Memorial Day, May 31, 2023 for an NSRS Modernization update.

REGISTER

https://geodesy.noaa.gov/datums/newdatums/fig-2023.shtml


01/20/2023

NGS Webinar Series

- Monthly webinars highlight geodesy and coastal mapping programs, products, and research
- Each webinar features an NGS employee delving into a topic of interest, and generally includes a moderated question and answer session
- Registration is free and video recordings are made available for later viewing
- Certificates of attendance are available

01/20/2023

https://geodesy.noaa.gov/web/science_edu/webinar_series/ ISPLS 2023 Convention, Fort Wayne

NOS Home + NGS Employees + Privacy Policy + Feedback + Disclaimer + USA.gov + Ready.gov + Site Map + Contact Webmaster

01/20/2023

geodesy.noaa.gov

https://geodesy.noaa.gov/

NOAA's National Geodetic Survey (NGS) provides the framework for all positioning activities in the Nation. The foundational elements of latitude, longitude, elevation, and shoreline information impact a wide range of important activities.

117

geodesy.noaa.gov

Thank You!

Jacob M. Heck, Ph.D., P.S. Great Lakes Regional Geodetic Advisor (IN, IL, WI, MI) U.S. National Geodetic Survey, NOAA jacob.heck@noaa.gov

c/o NOAA Great Lakes Environmental Research Laboratory 4840 S. State Road Ann Arbor, MI 48108

For more information, visit <u>https://geodesy.noaa.gov</u>

ISPLS 2023 Convention, Fort Wayne